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Abstract. A close coupled, distributed radiator heavy ion target is presented. Close coupled refers
to a decrease in the distance between the hohlraum wall and the inertial confinement fusion capsule.
In two dimensional, integrated, LASNEX calculations, this target produced 436 MJ of yield from
3.27 MJ of ion beam energy for a gain of 133. To achieve these results, the hohlraum dimensions
were reduced by 27% from the previous distributed radiator, heavy ion target while driving the same
capsule. This reduced the beam energy required from 5.9 to 3.27 MJ. Calculations of single mode
Rayleigh–Taylor growth for this capsule show that this capsule is more stable than at least one of
the NIF target designs (the PT design which uses a CH ablator doped with oxygen and bromine).
This means that issues regarding the Rayleigh–Taylor instability for the heavy ion driven capsule can
be settled on NIF. This close coupled target can also be scaled down in size for an Engineering Test
Facility; LASNEX calculations predict that a gain of 94 can be achieved from 1.75 MJ of beam energy.
In addition, gain curves for distributed radiator targets with the ‘conventional’ case to capsule ratio
and the close coupled case to capsule ratio are presented.

1. Introduction

There is a spectrum of possible inertial confine-
ment fusion targets. At one end is a direct drive
target in which the beam (ion or laser) energy is
directly deposited on the capsule [1, 2]. Direct drive
is the most efficient method of imploding a capsule
because a large fraction of the beam energy is cou-
pled to the capsule. At the other end of the spectrum
is an indirect drive target in which the beam energy is
converted to X rays in a hohlraum. The X rays then
transport the energy to the capsule. Indirect drive
is less efficient because much of the beam energy
goes into heating the hohlraum walls. While less effi-
cient than direct drive, indirect drive has advantages
in uniformity since the radiation transport smooths
out the high frequency oscillations. In addition, radi-
ation drive has higher hydrodynamic efficiency and
improved stability properties compared with direct
drive.

Heavy ion driven inertial confinement fusion has
generally favoured indirect drive targets. Because
accelerators are efficient (∼25–35%), gains as low as
30–40 still produce an efficiency gain product (ηG)
greater than the 8–10 needed for a power plant. The
low gain requirement means that a high coupling effi-
ciency is not necessary, and the irradiation unifor-
mity advantages of indirect drive targets are attrac-
tive. In addition, indirect drive targets are better
suited to two sided illumination, which has advan-
tages for power plant design [3].

On the other hand, the cost of the accelerator
increases as the beam energy required increases. One
method for reducing the cost of the accelerator is
to reduce the necessary beam energy by increasing
the coupling efficiency from the beams to the cap-
sule. To accomplish this, we have reduced the size
of the hohlraum surrounding the capsule. By doing
so, we reduce the amount of energy going into the
hohlraum wall and increase the coupling. By start-
ing with an indirect drive target and moving towards
a more closely coupled, indirect drive target, many
of the advantages of indirect drive are retained.

In this article, we present LASNEX [4] calcula-
tions of a close coupled target that produced a yield
of 436 MJ from 3.27 MJ of ion beam energy. In
addition to describing the target, we show results
from single mode, Rayleigh–Taylor calculations of
this capsule. In these Rayleigh–Taylor calculations,
we include the radiation converter because its prox-
imity to the capsule could have an impact on the
ablative stabilization of the Rayleigh–Taylor instabil-
ity. Finally, we present gain curves for these types of
targets.

2. Close coupled target design

Our goal for the close coupled, distributed radia-
tor target was to reduce the beam energy required
from 5.9 MJ [5–7] to 3.5 MJ by reducing the
hohlraum size while driving the same capsule. We
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Figure 1. Diagram of a quarter of the capsule and

hohlraum for the close coupled target. The complete tar-

get can be formed from a rotation about the z axis and

a reflection about the r axis. The materials and densities

used were as follows: A, AuGd at 0.1 g/cm3; B, 15 µm

layer of AuGd at 13.5 g/cm3; C, Fe at 16 mg/cm3; D,

(CD2)0.97Au0.03 at 11 mg/cm3; E, AuGd at 0.11 g/cm3;

F, Al at 70 mg/cm3; G, AuGd at 0.26 g/cm3; H, CD2 at

1 mg/cm3; I, Al at 55 mg/cm3; J, AuGd sandwich with

densities 0.1 g/cm3, 1.0 g/cm3 and 0.5 g/cm3; K, DT at

0.3 mg/cm3; L, DT at 0.25 g/cm3; M, Be0.995Br0.005 at

1.845 g/cm3; N, (CD2)0.97Au0.03 at 32 mg/cm3.

began with a distributed radiator target [5–7] that
had a ‘conventional’ case to capsule ratio. In the
distributed radiator target, most of the hohlraum is
filled with converter material that converts the beam
energy into X rays which then drive the capsule. As
a shorthand, we refer to the distributed radiator tar-
get that has a conventional case to capsule ratio as
the ‘conventional distributed radiator target’ and the
distributed radiator target that has a close coupled
case to capsule ratio as the ‘close coupled target’.
In the conventional distributed radiator target, the
energy distribution was as follows: 1.09 MJ in the
converters (although the dimensions in Fig. 1 are
for the close coupled target, regions C, D, E, F, G
and N represent this part of the target for both the
close coupled and conventional distributed radiator
targets), 2.84 MJ in the wall (regions A and B in
Fig. 1), 0.25 MJ in the beam block (regions I and J
in Fig. 1), 0.67 MJ escaped (energy radiated away
mainly from the outer surface of regions E and G
in Fig. 1) and 1.02 MJ in the capsule (regions K, L
and M in Fig. 1). In the close coupled target, most
of the hohlraum dimensions were scaled by a factor
of 0.736. The energy into the converters Econ scales
as the volume, while the energy into the wall Ewall

and beam block Ebl, as well as the escaped energy
Eesc, scale as the area. The energy into the capsule

Ecap is unaffected. A target scaled by 0.736 should
then use

Ebeam = l3Econ + l2(Ewall + Ebl + Eesc) + Ecap

= (0.736)3(1.09) + (0.736)2(2.84 + 0.25 + 0.67)

+ 1.02

= 3.5 MJ. (1)

In the close coupled design, about 28% (1 out
of 3.5 MJ) of the beam energy is coupled to the
capsule. For comparison, the earlier heavy ion tar-
get has about 17% (1 out of 5.9 MJ) of the beam
energy absorbed by the capsule. The NIF target has
about 11–15% (0.15–0.2 out of 1.35 MJ) of the laser
energy absorbed by the capsule [8, 9]. Of course, the
NIF baseline target must be conservative; efforts are
already under way to design NIF targets with higher
coupling efficiency [10]. Target features such as low
density walls designed to be in pressure balance with
the hohlraum fill, which are used in the close coupled
target presented here, allow us to move the hohlraum
wall closer to the capsule. These features may also be
used in future laser targets.

2.1. Scaling the target

The hohlraum and capsule used in the close cou-
pled design are shown in Figs 1 and 2 with capsule
dimensions rabl = 2.34 mm, rfuel = 2.12 mm and
rgas = 1.8 mm. The hohlraum is mainly a scaling
of conventional distributed radiator design [7]; the
major differences between a simple scaling and the
hohlraum shown in Fig. 1 are:

(a) A larger beam block radius to hohlraum radius
ratio,

(b) A larger ‘tilt’ to the hohlraum wall over the cap-
sule waist,

(c) A 10% larger ratio of hohlraum length to radius.

The size of the beam block is determined by the
size of the capsule and so it is not scaled. This means
that the radius of the ion beams is reduced by more
than 0.736. For this design, we assumed the same
number of beams as we did for the conventional dis-
tributed radiator target (8 beams per side in the
low power, foot pulse and 16 beams per side in the
main pulse) and the same beam geometry (elliptical
beams overlayed to form an annulus on the end of
the hohlraum) [7]. The beams used in this calcula-
tion were elliptically shaped with major and minor
axes of 2.78 and 1.0 mm for an ‘effective’ radius√

ab = 1.67 mm. The beams were assumed to have a
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Figure 2. Pie diagram of the capsule. The capsule uses

cryogenic DT fuel and a beryllium ablator doped with

0.5% bromine.

Gaussian distribution and this ellipse is the one that
contains 95% of the charge.

It should be noted that in this geometry all the
beams cross just upstream of the target. The deflec-
tions that result from this crossing may make it more
difficult to achieve the small beam spots that this tar-
get requires. Experiments and detailed simulations of
the ion beams in the accelerator and reactor cham-
ber will be needed to determine whether beam spots
of this size can be achieved.

Because the beam block size was kept con-
stant, the beam centroids were aimed closer to the
hohlraum wall. In particular, the beam centroids hit
the end of the hohlraum at a radius of 2.8 mm
roughly where regions E and G intersect in Fig. 1.
To accommodate the beam entrance angles (6◦ in
the foot and 12◦ in the main pulse), the radius of
the hohlraum at the capsule waist was increased. If
the radius of the hohlraum near the capsule waist
was not increased, too much of the beam energy was
deposited in the hohlraum wall causing symmetry
problems.

2.2. Symmetry issues

To analyse the time dependent asymmetry of
the target, we monitor the time integrated pressure
(
� t
0 P (t�)dt�) near the ablation front as a function of

time. We then decompose this pressure into Legen-
dre moments, P2, P4, etc. and compare these values
with P0. Because the orthogonality condition for the
Legendre polynomials is
� 1

−1
Pl�(x)Pl(x)dx =

2
(2l + 1)

δl,l� (2)

we need to multiply the decomposed values by 2l +
1 before comparing them with the P0 component.

For example, if the pressure is written as Pr(x) =�
αlPl(x), then

(2l + 1)
� 1

−1
Pl(x)Pr(x)dx = 2αl. (3)

The odd moments, P1, P3, etc. are assumed to be
zero due to left–right symmetry.

Our initial calculations of the close coupled tar-
get used the same hohlraum length to radius ratio as
the conventional distributed radiator target and had
problems with P4 asymmetry. Radiation uniformity
is a big issue in the close coupled target, because the
smaller case to capsule ratio results in less radiation
smoothing due to transport. P4 asymmetries can be
tuned out by adjusting the ratio of the hohlraum
length to radius because this changes the location of
the sources relative to the zeros of P4. In distributed
radiator targets, the sources of radiation are placed
near the zeros of P4 and weighted such that P2 is
approximately cancelled. Figure 3 shows the P4 com-
ponent of the time integrated pressure (scaled up 9×)
measured near the ablation front as a function of
time for two calculations. The lower curve shows the

Figure 3. The 9 × P4 component of the time inte-

grated pressure ( t
0

P (t�)dt�) measured near the ablation

front as a function of time for two calculations. The fac-

tor of 9 is included because of the normalization for the

Legendre polynomials. The lower curve shows the origi-

nal hohlraum length while the upper curve shows a 10%

longer hohlraum. In the distributed radiator targets, the

energy is deposited near the zeros of the fourth Legendre

polynomial P4 and weighted such that P2 is small. The

P4 asymmetry is tuned by changing the ratio of hohlraum

length to hohlraum radius. A 10% change in hohlraum

length (at fixed radius) results in a 2% change in the P4

asymmetry at the capsule.
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original hohlraum length to radius and the upper
curve shows a 10% increase in the hohlraum length
(with fixed radius). The 10% longer hohlraum shows
a smaller swing in asymmetry, about 1.5% around
30 ns, than the original hohlraum length, which had
a maximum asymmetry swing of about 2.5% around
25 ns. Although one calculation with the original
hohlraum length did ignite, the radiation uniformity
was very marginal. Increasing the hohlraum length
by 10% caused a 6% increase in beam energy but pro-
duced a more robust implosion. Figure 3 may indi-
cate increasing the hohlraum length by 5% instead of
10% would produce even better symmetry and with
a smaller energy penalty.

Because the radiation smoothing is reduced in
the close coupled target, we were careful to ade-
quately resolve the P6 and P8 modes in the calcula-
tion. Thirty-two angular zones were used around the
90◦ quadrant of the capsule shown in Fig. 1. The zon-
ing in the hohlraum was essentially the same as that
used in calculations of the conventional distributed
radiator target, which is shown in Fig. 1 of Ref. [5]
or Fig. 6 of Ref. [6]. The time dependent asymmetry
is shown in Fig. 4. As in the conventional distributed
radiator target, the ion kinetic energy was changed
to overcome range shortening. In this case, the ion
energy was increased from 2.2 to 3.5 GeV at 24 ns;
the change in ion energy is seen in the asymmetry as
the P2 component changes slope around 24 ns.

Figure 4. Time dependent asymmetry is monitored

by measuring the time integrated pressure at the abla-

tion front and decomposing into Legendre moments. The

change in slope of the P2 moment at 24 ns is due to the

change in ion kinetic energy between the foot and main

pulse beams.

Figure 5. Beam current as a function of time used in the

2-D integrated LASNEX calculations assuming a total of

16 beams in the foot (8 per side) and 32 beams in the

main pulse (16 per side).

Figure 6. Hohlraum temperature as a function of time

from the 2-D integrated calculation of the close coupled

target.

2.3. Target performance

The target shown in Fig. 1 produced 436 MJ of
yield from 3.27 MJ of ion beam energy in 2-D inte-
grated LASNEX calculations. This represents a gain
of 133. Figure 5 shows the beam current used to drive
the target as a function of time. In the foot, 0.49 MJ
of 2.2 GeV Pb+ ions were used, while the main pulse
was made up of 2.78 MJ of 3.5 GeV Pb+ ions. This
corresponds to a peak power of 470 TW. Our con-
ventional distributed radiator design (5.9 MJ target)
had a peak power of 650 TW; the peak power in the
close coupled target did not drop as much as would
be expected from the energy decrease because of the
pulse shape used. Future calculations will explore
pulse shapes that result in lower peak power and that
are easier for the accelerator to produce.

The hohlraum temperature driving the capsule
is shown in Fig. 6. The peak temperature is about
10 eV lower than the temperature used to drive
our previous calculations. This decrease in drive
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temperature accounts for the fact that less than
3.5 MJ of beam energy (as the scaling would pre-
dict) was needed even though the hohlraum length
was increased by 10%.

3. Rayleigh–Taylor instability
for the close coupled target

Single mode, linear, Rayleigh–Taylor calculations,
similar to those done for the NIF targets, show
growth factors that are the same or smaller than
those calculated for NIF. In these calculations, a
small perturbation was introduced on the surface
of the ablator. The calculation was then driven by
a temperature source placed in the low density gas
region surrounding the capsule (Fig. 7). The linear
growth factor was measured by finding the size of
the perturbation that had fed through to the outside
of the hot spot at ignition time divided by the size
of the initial perturbation. We ran these calculations
for a variety of modes ranging from l = 30 (12◦ per
wavelength) to l = 240 (1.5◦ per wavelength) and
found that all the growth factors were less than 300
(see Fig. 8).

As is shown in Fig. 7, we tried to include the effect
of the converter over the waist of the capsule. Since
this converter is located very close to the capsule in
the close coupled design, we were concerned that it
could affect the ablative stabilization and increase

Figure 7. Pie diagram of the simulation region for the

2-D Rayleigh–Taylor instability calculations. The iron

converter over the capsule waist is included in the cal-

culations to determine its effect on the Rayleigh–Taylor

growth rates.

Figure 8. Linear, single mode, Rayleigh–Taylor growth

factors as a function of mode number. One calculation

at mode 30 (denoted by the circle) was done without the

iron converter over the capsule waist for comparison.

the growth rate for the Rayleigh–Taylor instability.
In the Rayleigh–Taylor runs, the temperature source
was placed in the gas because we wanted to be sure
that we had an accurate source driving the capsule.
In a real target, there is a source of radiation in the
iron converter. This discrepancy in the location of the
source could change the motion of the iron converter
and change the converter’s effect on the Rayleigh–
Taylor instability. In Fig. 9, the solid curve shows the
location of the gas–iron interface as a function of time
for the Rayleigh–Taylor instability calculations. The
crosses in Fig. 9 show the same interface from the
2-D integrated calculations. Since we do rezoning in
the 2-D integrated calculations, the gas and ablator
materials mix with the iron. The crosses show the
point where 50% (by weight) of the material is iron.
The error bars show the extent of the mixed layer; the
lower end of the error bars is the point where 10% of
the material is iron while the upper end of the error
bars is the point where 90% of the material is iron.
This figure indicates that even with the radiation
source in the gas, the gas–iron interface is roughly
correct.

To understand whether the iron converter was
changing the Rayleigh–Taylor growth rate, we ran
one calculation without the converter. The circle in
Fig. 8 shows the growth factor for mode 30 without
the converter and shows essentially the same growth
as with the converter.

Lindl [11] found linear growth factors for one
NIF design peaking around mode 30 with a maxi-
mum value of about 800. It is reassuring to see that
our linear growth factors are smaller by a factor of
two or more. This shows that our capsule is more

Nuclear Fusion, Vol. 39, No. 11 (1999) 1551



D.A. Callahan-Miller and M. Tabak

Figure 9. Location of the interface between the iron

converter and the gas surrounding the capsule as a func-

tion of time. The solid curve shows the interface for the

configuration used to model the Rayleigh–Taylor instabil-

ity (which had the temperature source in the gas rather

than in the converter). The crosses show the interface

from the 2-D integrated calculation (which had a radia-

tion source inside the converter). In the 2-D integrated

calculations, rezoning causes the iron to mix with the gas

and/or the ablator material. The crosses show the posi-

tion where 50% (by weight) of the material is iron. The

error bars indicate the width of the mixed layer by show-

ing the positions where the material is 10% (lower end of

the error bar) and 90% (upper end of the error bar) iron.

conservative than at least one NIF target; ignition
on NIF will then demonstrate the stability of our
capsule.

In addition, we can estimate how far perturbations
due to the Rayleigh–Taylor instability will move into
the hot spot assuming purely linear growth (i.e. no
non-linear saturation) by multiplying (surface fin-
ish) × (growth factor) × (convergence ratio)/(initial
ablator radius). For example, smooth NOVA cap-
sules have a surface finish of about 300 Å [11, 12].
Using a growth factor of 300 (from Fig. 8) and a
convergence ratio of 20–35 [11], we find that linear
growth will cause perturbations to protrude 8–12% of
the way into the hot spot. Again, this is more conser-
vative than NIF, because not only is the growth fac-
tor smaller, but our hot spot radius (∼(initial abla-
tor radius)/(convergence ratio)) is about a factor of
two larger (since our initial ablator radius is a factor
of two larger). This gives us confidence that issues
about the Rayleigh–Taylor instability for the heavy
ion capsule will be settled on NIF.

4. Close coupled target
for an Engineering Test Facility

One of the goals of the inertial fusion energy pro-
gram is to construct an Engineering Test Facility
(ETF) that demonstrates all the physics and technol-
ogy needed for an inertial fusion energy power plant.
The ETF would be a high repetition rate, high gain
facility, and would be used for testing chamber con-
cepts, materials and advanced targets. Since the ETF
would not be a power plant, it would not need the full
yield required for 1 GW(e) operation. Provided the
driver has adequate repetition rate, an ETF might be
upgradable to a demonstration power plant by using
multiple chambers with a beam switchyard, however.

To keep the cost of an ETF reasonable, a driver
energy of 2 MJ or less will probably be required [13–
15]. A scaled down version of the close coupled tar-
get could meet those requirements. One dimensional
LASNEX calculations of a 0.77 scale version of our
capsule (Fig. 2 with rabl = 1.80 mm, rfuel = 1.63 mm
and rgas = 1.39 mm) produced 183 MJ of yield when
driven by the radiation temperature profile shown in
Fig. 10.

We can make an estimate of the beam energy
required to drive the ETF scale target by consid-
ering how each component of the target scales with
length l, time τ and temperature Tr. The energy into
the wall scales as [11]

Ewall ∝ l2T 3.3
r τ0.62. (4)

The energy into the capsule and beam block as well
as the energy escaped scale as

Ecap + bl + esc ∝ l2T 4
r τ. (5)

Figure 10. Temperature as a function of time used to

drive the ETF scale capsule in 1-D. The capsule yield in

1-D was 183 MJ.
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The energy into the converters scales as

Econ ∝ l3Trτ. (6)

In the 3.27 MJ close coupled target, the energy dis-
tribution was 1.52 MJ in the wall, 0.90 MJ in the
capsule, 0.12 MJ in the beam block, 0.32 MJ escaped
and 0.42 MJ in the converters. Scaling these energies
to an ETF scale target assuming l = 0.77, τ = 0.77
and Tr = 252/240 = 1.05 predicts 1.8 MJ of beam
energy.

Two dimensional LASNEX calculations confirm
these scalings. A 0.77 scale version of the close cou-
pled target produced 165 MJ from 1.75 MJ of beam
energy. The ion current per beam and resulting radi-
ation temperature profiles are shown in Fig. 11. This
represents a gain of 94.

The beam parameters must also be scaled with
the target. The 0.77 scale target would require beams
with an effective radius of 1.29 mm (0.77× 2.1 mm).
The ion range would also be decreased by 0.77;
this decrease in range would correspond to a kinetic
energy of about 3 GeV for Pb+ ions. In addition,
the pulse duration is also shorter by the same fac-
tor of 0.77. While the lower kinetic energy might
make the accelerator less expensive, the smaller spot,
shorter pulse duration and lower kinetic energy all
make focusing the beam more difficult. These new
requirements need to be evaluated in an integrated
system including accelerator, final focus and cham-
ber transport.

Figure 11. Ion current per beam as a function of time

and the resulting hohlraum temperature from the 2-D

integrated calculations of the ETF scale target. The beam

currents assume 16 beams of 1.85 GeV Pb+ ions in the

foot pulse (8 per side) and 32 beams of 3 GeV Pb+ ions

in the main pulse (16 per side).

5. Gain curves for
distributed radiator targets

It is useful to have gain curves for both the con-
ventional and close coupled distributed radiator tar-
gets that can be used to rapidly study the trade-
offs between, for example, the target, accelerator and
chamber in systems studies and power plant opti-
mizations.

To calculate the gain curves, we begin by scal-
ing to larger and smaller capsules following Lindl’s
Eqs (87) and (90) [11]. For a fixed in-flight aspect
ratio (R/∆R), the amount of energy that the cap-
sule must absorb is

Ecap ∝ β−3/2T−4.5
r (7)

where β is the adiabat (which we assume is con-
stant) and Tr is the hohlraum temperature. For a
given amount of energy absorbed by the capsule, we
use this equation to calculate the hohlraum radiation
temperature. The capsule radius then scales as

rcap ∝
β1/5E1/3

cap

T 1.03
r

(8)

and the pulse duration scales as

τ ∝ E1/3
cap

β2/5T 1.93
r

. (9)

Given the capsule size, the pulse duration and the
hohlraum temperature, we then calculate the amount
of beam energy needed to drive the hohlraum. We
break the hohlraum up into several pieces: the wall
(for the close coupled target, regions A and B in
Fig. 1), the converters (regions C, D, E, F, G and
N in Fig. 1) and the beam block (regions I and J
in Fig. 1). To calculate the required beam energy,
we need the energy in each of these pieces plus the
capsule (regions K, L and M in Fig. 1) and the
energy that escapes from the beam entrance ‘win-
dow’ (regions E and G in Fig. 1). The ratio of the
hohlraum radius to the capsule radius is an input
parameter and determines whether the gain curve is
for a conventional distributed radiator target or a
close coupled target.

The wall is heated by a Marshak wave and the
energy into it is given by [11]

Ewall ∝ r2
hohlT

3.3
r τ0.62. (10)

As the hohlraum size is changed, the heat capacity
of the converters can be scaled assuming either con-
stant ion range (i.e. the converter density is changed
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to make up for the change in hohlraum length) or
variable ion range (i.e. the converter density is con-
stant and the ion range changes as the hohlraum
length changes). In the case of constant ion range,
the energy into the converters varies as the hohlraum
area,

Econ ∝ r2
hohlTrτ (11)

while the energy into the converters varies as the
hohlraum volume in the case of variable ion range

Econ ∝ r3
hohlTrτ. (12)

The beam block (region J in Fig. 1) is heated by
a Marshak wave from the inside of the hohlraum
and by the beam on the outside of the hohlraum.
With the beams overlaid to form an annulus, very
little beam energy is deposited in the beam block so
we assume that most of the energy absorbed by the
block is from the Marshak wave,

Ebl ∝ r2
capT

3.3
r τ0.62. (13)

To calculate the amount of energy that escapes
through the annular beam entrance ‘window’
(regions E and G in Fig. 1), we follow the deriva-
tion of Ho et al. [16]. Since most of the energy loss
occurs during the main pulse, when the beam power
is roughly constant, it is assumed that the radia-
tion flux from the surface S0 has reached a steady
state value. Since the window is optically thick, the
radiation flux can be determined from a steady state
diffusion equation. Ho et al. solved for the flux on
the outside (side facing vacuum) of the window and
found

S0 ≈
8σ

9α

T 4+β
r

δ
+

qδ

2
(14)

where σ is Boltzmann’s constant, δ is the range
(g/cm2) of the window, Tr is the radiation tempera-
ture inside the hohlraum, q is the specific energy loss
rate of the beam in the window (W/g), and α and
β are constants used to fit the Rosseland mean free
path. The Rosseland mean free path, lR, is assumed
to be of the form lR = αT β/ρ. Comparing this form
with that given by Lindl [11] for gold, we use β = 1.5
and α = 1/6000 when T is measured in hundreds of
electronvolts. The energy that escapes is then calcu-
lated using

Eesc ≈ 2π(r2
hohl − r2

cap)S0τ. (15)

The constants of proportionality used to find
Ewall, Econ and Ebl were determined by using one
of the 2-D integrated LASNEX calculations. For the

gain curves shown below, the 6 MJ conventional
distributed radiator target [7] was used. For that
target, Ecap = 1.0 MJ, Ewall = (2.9 MJ)×1.1,
Econ = 1.1 MJ, Ebl = 0.3 MJ and Eesc = 0.7 MJ
when driven at 250 eV for 8 ns. The energy into
the wall was increased by a factor of 1.1 to take
into account the longer hohlraum used in the close
coupled design (described in Section 2.2) to better
tune out P4. We suspect that our conventional dis-
tributed radiator target would also benefit from this
change and so we included the extra energy in the
gain curves.

To calculate the gain, we need the total driver
energy and the yield. The driver energy is calculated
by adding up all the components,

Edr = Ecap + Ewall + Econ + Ebl + Eesc. (16)

The yield is calculated by again using the scaling
from Lindl,

Y ∝ E5/3
cap . (17)

Finally, the gain is just the yield divided by the driver
energy.

Gain curves for the conventional and close coupled
distributed radiator targets are shown in Fig. 12.
The three point designs (2-D integrated LASNEX
calculations) are shown by the squares. In the inte-
grated LASNEX calculations, the conventional dis-
tributed radiator target was driven at 250 eV, while
the close coupled target was driven at 240 eV. The
gain curves are plotted for both drive temperatures.
The implications for the lower drive temperature on
the ignition margin (defined as the fraction of the
incoming kinetic energy of the fuel left at ignition)
are currently under study, although preliminary cal-
culations show that 240 eV is acceptable.

For the distributed radiator targets, the beam
spot size is determined by the hohlraum radius and
the capsule radius as is shown in Fig. 13. This means
that for each target size, there is an associated beam
spot size. Figures 14 and 15 show the beam spot sizes
for the conventional distributed radiator target and
the close coupled target, respectively, shown in the
gain curves.

6. Conclusions

Two dimensional, integrated LASNEX calcula-
tions predict that a heavy ion target can produce
a gain of 133 from 3.3 MJ of beam energy. In this
close coupled target, 28% of the ion beam energy
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Figure 12. Gain curves for the distributed radiator tar-

gets. The lower set of curves is for the conventional case

to capsule ratio, while the upper set is for the close cou-

pled design. For each set, the solid curve is for 250 eV

drive and fixed ion range (i.e. converter densities are

increased (decreased) as hohlraum length is shortened

(lengthened)), the dashed curve is for 250 eV drive and

varying ion range (i.e. the ion range is shortened (length-

ened) as the hohlraum length is shortened (lengthened)),

the dotted curve is for 240 eV drive and fixed ion range

and the chain curve is for 240 eV drive and varying ion

range. The squares represent the three integrated LAS-

NEX calculation point designs.

Figure 13. The dimensions of each beam are determined

by the hohlraum radius and the beam block radius (which

is related to the capsule radius). Each beam is assumed

to have a Gaussian distribution and is focused to an ellip-

tical spot. The semi-major and semi-minor axes shown in

this figure are assumed to contain 95% of the beam. (The

beams are chosen to slightly overfill the target.)

Figure 14. Beam spot sizes as a function of driver

energy for the conventional case to capsule ratio. The

curves are for 250 eV drive and fixed ion range. The semi-

major (a) and semi-minor (b) axes of each elliptical beam

spot along with the ‘effective’ radius (i.e. the radius of a

circle with the same area as the ellipse) are shown. The

ellipse described by ‘a’ and ‘b’ is the one that contains

95% of the beam.

Figure 15. Beam spot sizes as a function of driver

energy for the close coupled case to capsule ratio. The

curves are for 250 eV drive and fixed ion range. The semi-

major (a) and semi-minor (b) axes of each elliptical beam

spot along with the ‘effective’ radius (i.e. the radius of a

circle with the same area as the ellipse) are shown. The

ellipse described by ‘a’ and ‘b’ is the one that contains

95% of the beam.
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is absorbed by the capsule. By doing so, we reduce
the amount of beam energy that the driver needs to
deliver by almost a factor of two. This should have a
significant impact on the cost of the driver. Since the
driver is the single largest item in a power plant, this
should also have an significant impact on the cost of
electricity.

While the close coupled target reduces the amount
of beam energy the driver has to deliver, it also
requires a smaller beam focal spot than the con-
ventional distributed radiator targets. This puts
renewed emphasis on achieving high beam quality
in the accelerator by controlling emittance growth,
instability growth, etc. This target shows the benefit
that can be achieved if the accelerator can deliver a
small spot. In the final stage, the integrated system of
accelerator, final focus, chamber transport and tar-
get will have to be optimized.

In addition to a smaller driver for a power plant,
the close coupled target opens up the possibility of
a high gain ETF from a 1.5–2 MJ driver. The ETF,
which would be a step along the path to a fusion
power plant, would be able to test all the physics
and technology needed for a power plant. Our calcu-
lations predict that a smaller version of the close cou-
pled target could achieve a gain of 94 from 1.75 MJ
of beam energy. This target stressed the beam qual-
ity required from the accelerator even further since it
requires a smaller spot and a shorter pulse duration.

Finally, we have presented gain curves for both the
conventional distributed radiator and close coupled
distributed radiator targets. These curves are useful
for optimizing the entire system of accelerator, final
focus, target and reactor chamber.
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